
  

  

Abstract— Between the information transfer rate and the 
classification accuracy of a brain computer interface (BCI) 
system a balance occurs. If we want higher correct 
classification rates the BCI system will consequently become 
slower. Otherwise, a faster (online) BCI system assumes a 
lower classification rate. If we analyze the human motor system 
(HMS) we can view the hierarchical organization (with 
different control levels that receive specific sensorial 
information) as a corresponding biological solution to solve the 
problem of the system complexity versus the real time control. 
The muscular proprioceptors and the receptors from the 
vestibular system inform (especially at the low motor control 
levels) the central nervous system about the locomotor 
mechanics and the body posture. The tactile, visual and 
auditory information is mainly used by the high 
control/command levels of the HMS. HMS requires a training 
time interval for executing a specific motor program (e.q. 
walking), followed then by a systematic adaptation to the 
changing of the human living system parameters and of the 
environment characteristics. This paper presents the concepts 
of an intelligent, bio-inspired and with auto-organization 
robotic system (e.g. a wheelchair), iBiAoRS, that will be 
capable both: to control the system movement dynamics based 
on a BCI system and to obey the successive hierarchical 
subordination principle that characterizes the HMS. An auto-
organization robotic system is developed and some preliminary 
results are presented in order to test one of the main concept of 
iBiAoRS. 

 
Index Terms— BCI, bioinspired systems, human motor 
system, robot, self-organization 
 

I. INTRODUCTION 
  In order to develop a BCI system useful in 
communications and environment control – system 
dedicated to people with severe motor disabilities (e.g. a 
simple word processing program, an intelligent wheelchair 
or a neuroprosthesis) –, at least two issues must be taken 
into consideration: the online capabilities of the system and 
the BCI classification performances.  

Between the online processing and the classification 
accuracy a compromise will always be to make. If we want 
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higher correct classification rates the BCI system become 
slower due to the complexity of the algorithms applied in the 
features extraction and classification stages.   

At this moment, the classification accuracy for a BCI 
system varies between 70% and 95% [1], [2], [3] and these 
performances mainly depends on: the number of the EEG 
channels, the type of the BCI methods, the methods used to 
remove artifacts, the processing techniques, the complexity 
and the discrimination power of the classification 
algorithms, the number and the categories of the mental 
tasks used etc.  

For example, many online BCI systems use continuous 
motor imagery task in order to obtain a system command 
from the EEG signals. Even if, major progress were done in 
the last fifteen years – while in 1998 imagined finger 
movements could be distinguished from the EEG signals 
with an accuracy of around 70% [4], right now (in 2009), in 
average, the accuracy is somewhere between 80% and 86% 
[2] –, further improvements must be done in order to have 
an average accuracy of at least 95%.  

The classification accuracy strongly depends on the 
subject brain characteristics and, also, on the existence of 
special training sessions. The mean classification accuracies 
in motor imagery tasks are from 75% up to 95% [2], [5] for 
a subject, but it is also possible to get inferior performances 
from 60% up to 70% for some subjects [2], [5].  
  Due to the difficulty of each subject to control his/her 
own EEG signals, a suitable training protocol, based on a 
visual feedback and lasting several weeks or months [2], is 
frequently implemented in many studies [2], [6]. 
Conventional systems of biofeedback are based on simple 
visual presentations [2] while other BCI systems use virtual 
reality as a tool to improve BCI-feedback presentation [6].  
 In general, the performance of the BCI technologies, 
measured in information transfer rate (i.e., bit rate), is 
modest. Actually the bit rate performance is different from 
system to system. There are BCI systems that achieve an 
average communication rate of 5.45 bits/min [7] while other 
systems work around 10 bits/min [2] etc. But, even under 
the best optimal conditions [8], none of the current existent 
BCI systems reach more than 25 bits/min. The bit rate is 
limited by two major factors: the subject ability to interface 
with a BCI system and the time performances of the 
algorithms used in the BCI system (processing, feature 
extraction and classification) – e.g., in motor imagery tasks 
the subjects must engage in one type of motor imagery brain 
activity for at least 7–8 s so that mu-rhythm power can be 
detected accurately [2]. Even if, due to the development of 
the new algorithms (that are now less time consuming), and 
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to the new faster technologies, the human remains the most 
limiting factor in the desire to get a higher information 
transfer rate (e.g. in a study about a motor imagery-based 
BCI system the mean bit rate for all 10 subjects was around 
7 bits/min; among them only one subject was able to obtain 
the higher bit rate, namely, 22 bits/min [2]). 
 In conclusion, in order to have both, higher information 
transfer rate and higher mental task classification accuracies, 
a new BCI system concept must be defined, implemented 
and tested. 

II. BIOLOGICAL CONSIDERATIONS 
The HMS has a very complex, hierarchical organization 

[9], with different control levels, each of them receiving 
different specific sensorial information needed for their 
functioning. The proprioceptors from tendons, muscles, 
joints and ligaments and the receptors from the vestibular 
system provide information to the brain regarding the 
adjustment of posture and movement (muscle length and 
tension, joint angle and the position of the body in space) 
[10]. This kind of information, of monitoring the details, is 
necessary especially at the low levels of motor control, while 
the sensorial information given by the exteroceptors from 
skin, eyes and ears inform us about the localization of the 
objects in space and about our relative position to these 
objects. The sensorial information is used especially at the 
high movement hierarchical control levels that are involved 
in the issue of the movement strategies. A key aspect is that 
these high hierarchical levels do not require a step by step 
monitoring of the details information. 

Within the motor system, the spinal cord performs a triple 
function: the reflex integration, the reflex coordination 
(movement command) and the conductive function. The 
spinal reflexes (SR – rapid, involuntary motor responses to 
a stimulus) are somatic reflexes mediated by the spinal cord. 
Reflexes are quick because they involve few neurons that 
trigger the response without waiting for brain analysis. The 
sensory stimuli for SRs arise from receptors in muscles, 
joints and skin and the neural circuitry responsible for the 
motor response is entirely contained within the spinal cord. 
In these spinal networks the interneurons are key elements 
that: (1) mediate influences of sensory input upon 
motoneurons and (2) constitute the networks generating 
complicated patterns (reverberating network, rhythm 
generator etc.). Also, the spinal reflex circuits provide the 
higher centers with a set of elementary patterns of 
coordination, from relatively simple combinations, like 
reciprocal innervation at a single joint, to more complex 
spatial patterns of movement, such as flexion reflex, and 
temporal patterns, as in the scratch reflex. 

Beside the reflex function the spinal cord has also a 
coordination function. Though reflex behaviors are 
automatic, the processing centers in brain can facilitate or 
inhibit reflex motor patterns based in spinal cord [11]. The 
spinal cord is a major component of the reflex acts 
adjustment process where it contributes at: the assessment of 
the chronological time evolutions, the control of the intensity 
of the responses, the rhythm and the rhythm modulation [12]. 

Thus, the spinal cord is responsible for the coordination of 
different motor patterns such as: walking, swimming, 
chewing, running etc.  

The reflex movements are involuntary, quick and 
stereotyped. However, the same command centers also 
participates to the realization of the conditioned reflexes and 
of the voluntary acts; this is because they receive –  from the 
superior encephalic centers – commands that are further 
passed on to the execution systems. As one can remark, at 
human at least, each medullary reflex has a double 
integration. This double integration is drawn from the 
principle of the hierarchical subordination of the movement 
dynamics control levels. 

In humans the general command of the movement is 
issued by the superior cerebral centers while the 
execution’s details of each movement are under the control 
of the sub-cortical and cerebellar areas [13].  The SRs are 
integrated with centrally generated motor commands to 
produce adaptive movements by adjusting the motor output 
during an evolving movement and by compensating the 
intrinsic variability of motor output. 

According to the complexity and the voluntary control, 
the movements issued by the human motor system can be 
classified in three classes: voluntary movements, reflex 
responses and rhythmic motor patterns. Among these classes 
of movements the voluntary movements are the more 
complex, they have a certain aim, can be learned and 
improved in time. In the movement patterns only their 
initiation and finishing are voluntary processes and these 
are combining the characteristics of both, the reflex and the 
voluntary acts. Moreover, it was found that the spinal 
circuitry in humans has the capability of generating 

locomotor-like activity (e.g. the stepping pattern) even when 
isolated from brain control and peripheral afferent feedback 
[14]. These spinal central pattern generators (CPGs) proved 
to play a major role in the organization of the locomotion 
activity by producing coordinated motor output. Under 
normal conditions, CPGs are under brain control, and 
sensory peripheral inputs can modulate their activity.  

III. THE IBIAORS CONCEPTS 
Having in mind the biological solution presented above, 

the fundamental concept of iBiAoRS consists in building up 
a bio-inspired, self – organized intelligent robotic system (a) 
able to have a dynamical movement control similar with the 
HMS. Hence, the proposed system will respect the 
hierarchical subordination principle. The system will consist 
in three control levels, feed-back loops, for dynamical 
movement (DM). Every component of the system will 
receive differentiate and specific information, according to 
their needs. In this way, it will obtain different internal 
representations for the continual changing external world. In 
accordance with these representations, every control 
hierarchical level will react in order to meet a global 
objective imposed by a human subject.  

The three levels of the iBiAoRS’ control hierarchical 
structure (see Fig. 2) are as follows: 
1. On the first DM control level, the revolutions speed of 



  

each of the two engines will be adjusted using two loops. 
Every loop is composed by a PI type controller. The first 
controller will adjust the current through engine and the 
second one will adjust its revolution speed. This engines-
control level is equivalent with the reflex paths (from 
spine) from the living human systems. In human living 
systems this control level is equivalent with the 
equilibrium mentioning reflexes or muscle length 
mentioning reflexes.   

2. The second DM control level is composed of an adaptive 
system that allows the iBiAoRS to avoid the obstacles 
from the immediate proximity; this adaptive process, that 
is continuous self-organizing, uses only the local 
representation of the external world, obtained from the 
sensors. This level could be implemented using, for 
example, a neural network (or a fuzzy system, genetic 
algorithm etc.) that has as objective to minimize the error 
given by the amount of the relative distances derived 
from the sensors’ outputs, E = ∑i (∆di)2. In previous 
equation, ∆di is the gradient of the distance information 
from the sensor i. In this way, in a first stage, iBiAoRS 
will behave like a human being that learns first to walk 
by a continuous learning process. The second control 
level of DM is equivalent with the sub-cortical and 
cerebellar areas that control the execution’s details of 
each movement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. The bio-inspired robotic system 
 

3. The last level of DM control, namely the BCI system, 
consists, as in the HMS, in a voluntary motor command 
issued at the cortical level of a human subject. In this case, 
the motion dynamics of the iBiAoRS will be given by the 
cerebral activity of the subject that visually evaluates the 
trajectory which the robot must to follow and, then, gives 
a global  command (ahead, back, left, right) by means of 
the BCI system. Due to its local autonomy, the iBiAoRS 
will execute this global command with no need of extra 
detail commands to avoid the local obstacles. But to do 
this the iBiAoRS makes a double integration: that of the 

global command and that of the local control of the 
motion dynamics. Thus, the local autonomy relieves the 
BCI system of the motion details–related commands, 
giving it the possibility to increase its performances.  

Even if the information transfer rate obtained by the BCI 
system is low, due to the local autonomy of the iBiAoRS 
(which does not receive a motion-details type 
command), the time between two movement commands 
delivered by the BCI system increases; thus, the global 
real-time movement dynamic behavior improves. More, 
the classification accuracy can be increased (through 
complex time consuming algorithms) without any side 
effects to the real time operation of the system.  

IV. THE INTELLIGENT SELF-ORGANIZING CONTROLLER 
In order to develop the global iBiAoRS one of the first 

step was to implement and test each level of the DM control 
presented above.  

In this part of the paper we present the intelligent self-
organizing controller. This second level of DM control 
has to learn (in an adaptive manner, through an ongoing 
auto-organizing process) to move by avoiding the 
obstacles and by using for this only the local 
environment representation provided by the sensors.  

 
 

 

 

 

 

 

 

 

 
Fig. 2. The intelligent self-organizing robotic system 

 
The implementation of the concepts for this level of 

DM was done based on a small robotic system that had a 
number of distance sensors and that had to learn, in an 
adaptive manner, to minimize the value of the error 
proposed above. 

The intelligent self-organizing robotic system (ISoRSy) 
was constructed based on the MCF5213 development board 
that run the algorithm. This microcontroller is a highly 
integrated implementation of the ColdFireTM family of 
reduced instruction set computing (RISC) microcontrollers, 
produced by FreescaleTM Company. The MCF5213 
represents a family of highly-integrated 32-bit 
microcontrollers, featuring up to 32 Kbytes of internal 
SRAM and 256 Kbytes of Flash memory, eight PWM 
channels, four 32-bit timers with DMA request capability, 
eight channels ADC, 3 UARTs etc. The robot has four 
distance measuring sensors (GP2D120XJ00F), 3 of them 
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placed in front and one placed in back position, Fig. 2. Each 
DC engine is controlled by the microcontroller through a 
PWM channel based on an H-bridge. 

The intelligent self-organizing algorithm used to control 
the robot was a multilayer perceptron (MLP) neural network 
with two hidden layers. On the first hidden neural layer the 
MLP had 5 neurons, while the second hidden layer had 3 
neurons. The MLP network had 4 inputs (the normalized 
values obtained from the distance sensors) and two outputs 
(that supplied the command to the engines). Each output 
could take values in the interval [-1, 1], with the following 
connotations: 1 forward full power engine, -1 back full 
power engine and 0 stop the engine. The MLP network was 
trained based on the backpropagation algorithm. The error 
term used was: 
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where si is the value of sensor i and n is the time moment. 
Between n and n-1 moments there exists a time delay of 0.4 
seconds. This time delay is necessary for the intelligent 
robotic system in order to have enough time to move and 
change the sensor values. 

 
 
 
 
 
 
 
 
 
 

Fig. 3. A self-organized behavior acquired by the robot (a > 1) 

V. RESULTS 
The task performed by the robot, for which it had to learn 

a suitable self-organizing behavior, was to navigate through 
a delimited zone while avoiding collisions with obstacles 
randomly placed within. Since the robot did not have a 
global map of the work zone this was not a path planning 
problem, but one of local navigation and collision 
avoidance. The learning task was to evolve an intelligent 
self-organizing behavior represented as a set of stimulus-
response rules that map the current sensors distances state 
into velocity mode commands for the robot to execute. The 
learning rate was approximately 0.4 hertz. 

One interesting behavior obtained consisted in avoiding 
an imminent collision. When the robot came closed enough 
to an obstacle it stopped and after that the ISoRSy took 
quickly back. This interesting behavior was developed 
further by the intelligent self-organizing robot in the form of 
the hounding behavior, see Fig. 3. If a “hunting” system 
(HS) followed the ISoRSy, when the HS was in the sensor 
range the ISoRSy stopped from its dynamic movements and 
took quickly in the opposite direction (with a superior 
speed) trying continuously to increase the distance between 
itself and the HS, Fig. 3. 

VI. CONCLUSIONS 
In this paper we presented a new concept for a BCI bio-

instrumental complex, namely the iBiAoRS – inspired from 
the HMS hierarchical organization and able to deal with the 
compromise between the online processing and the 
classification accuracy. Using an adaptive controller, with a 
continuous self-organizing structure given by the local 
representation of the external world, the iBiAoRS was able 
to avoid obstacles without any supplementary control of the 
BCI system. Hence, the user of the system had only to 
initiate and to finish a global action (e.g. “take left”, “go 
forward”) without paying attention to local obstacles. Thus, 
the time between two different brain commands increased 
providing the user and the BCI system with more time to 
initiate and sustain a correct brain task and, respectively, to 
process the EEG signals. In the last part of the paper the 
second level of the movement dynamics controller was 
implemented and tested. The obtained results came to 
support the validity of the main iBiAoRS concepts. 
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